Extensions 1→N→G→Q→1 with N=C34 and Q=C22

Direct product G=N×Q with N=C34 and Q=C22
dρLabelID
C22×C34136C2^2xC34136,15

Semidirect products G=N:Q with N=C34 and Q=C22
extensionφ:Q→Aut NdρLabelID
C34⋊C22 = C22×D17φ: C22/C2C2 ⊆ Aut C3468C34:C2^2136,14

Non-split extensions G=N.Q with N=C34 and Q=C22
extensionφ:Q→Aut NdρLabelID
C34.1C22 = Dic34φ: C22/C2C2 ⊆ Aut C341362-C34.1C2^2136,4
C34.2C22 = C4×D17φ: C22/C2C2 ⊆ Aut C34682C34.2C2^2136,5
C34.3C22 = D68φ: C22/C2C2 ⊆ Aut C34682+C34.3C2^2136,6
C34.4C22 = C2×Dic17φ: C22/C2C2 ⊆ Aut C34136C34.4C2^2136,7
C34.5C22 = C17⋊D4φ: C22/C2C2 ⊆ Aut C34682C34.5C2^2136,8
C34.6C22 = D4×C17central extension (φ=1)682C34.6C2^2136,10
C34.7C22 = Q8×C17central extension (φ=1)1362C34.7C2^2136,11

׿
×
𝔽